RampMaster Range
Chambers for long/thin products
Originally designed for the Oil & Gas Industry to test downhole drilling tools.
Identified by being long and thin, RampMaster chambers are available in a wide range of versions including Horizontal, Vertical and 45° stands, double bay, non-magnetic, high temperature (+250°C) compressor cooled.
RampMaster chambers are available in a wide range of temperatures as well as internal sizes. Integral or remote cooling plants are available, as well as, LN2 cooling.
Typical Applications
- Oil & Gas downhole tool testing
- Thermal Stress
- Long, thin products
- Temperature cycling
Advantages
High Performance under Load
Designed for testing and calibration of Oil & Gas Industry downhole Tools, the RampMaster range is suitable for high loads.
Perfect for Long, Thin Products
With lengthways airflow, the products under test do not experience the thermal shock characteristic of other vendor’s chambers with crosswise airflow.
Product Jigs Including Rotation
Jigs and support frames can be isolated from chamber vibration using specially designed support frames that go through the chamber interior to the external floor. There are also jigs that allow product rotation during testing.
Non-Magnetic Versions
The RampMaster range is available in a non-magnetic version to allow calibration of sensitive instrumentation.
High Temperature versions available
Compressor cooled with our proprietary Evaporator Protection System, these high temperature versions can achieve +250°C to -40°C.
Low Thermal Gradients
Powerful circulating fans ensure low thermal gradient around the products under test.
Custom Versions Available
Although there is an extensive range of chambers in the RampMaster series and any of these can be used to make a cost-effective starting point for a custom version, when needed.
SIMPLEtouch
Touch Screen Programmer
Easy set-up and monitoring of chamber conditions, simplifies programming of complex cycles… read more
Internal Volumes | Temperature Ranges | Ramp Rates | Humidity | Airflow |
---|---|---|---|---|
600 – 3000ltrs | +180°C to -70°C (High Temp versions to +250°C) | up to 10°C/min | N/A | Longways |
Thermal Test chambers for Oil Well Probes

- Wide range of operating temperatures
- Low thermal gradients
- Controlled temperature ramp rates
- Compressor, cryogenic and air cooling options
- Custom configurations and interface jigs
- SIMPLEtouch programmer option
- Comprehensive protection features
- Non-Magnetic chamber option
Solutions
We specialise in providing thermal test solutions to industry; we offer standard and customised test chambers in a wide range of sizes and configurations to suit many different applications.
We work closely with major oil-well probe manufacturers to develop solutions specific to their needs. Probes need to be highly reliable since replacing a probe due to failures may interrupt drilling at a cost of thousands of pounds per hour.
Oil-well probes operate in extreme, high stress environments and this can include moving them from very low Arctic temperatures to very high down-hole temperatures. The test specifications vary according to probe size and type, temperature range, and capacity required and a number of typical examples are shown in this brochure. Our engineers would be pleased to discuss the most appropriate solution for you, without obligation.

Probe test requirements
Oil-well probes are typically long and thin and therefore standard (typically cubic) test chambers are wasteful of floor space. RampMaster chambers are configured to fit the appropriate product range.
High circulating airflow is used to minimise thermal gradients within the chambers. This ensures that multiple probes (where required) and different parts of each probe are subjected to the same conditions, in order to give consistent and repeatable results.
Temperature control
Microprocessor based temperature controllers are used with high accuracy temperature probes to achieve optimum control of temperature and ramp rates.
The Sharetree SIMPLEtouch touch-screen programmer is also available as an option (see separate brochure for a full description). SIMPLEtouch allows the user to set up complex thermal programs and has many other features such as customer events, data recording and graphing.


Heating methods
Electrical heaters are used to supplement the power dissipation of the probes in order to improve control response and allow faster heating rates. Solid-state switching is employed to minimise transients and switching noise.
Cooling methods
A variety of methods are used for chamber cooling, the choice depending on the temperature range, total power required and cooling ramp rates.
Air cooling can be used where the operating temperature is well above ambient, and provides a low cost solution in some applications. Air cooling is also used for cooling at high temperatures, either to reduce LN2 consumption or to avoid exposing refrigeration coils to excessive temperatures.
Cryogenic cooling using liquid nitrogen (LN2) is a powerful cooling method and especially useful where rapid cooling is required. A vacuum insulated Dewar has to be used to store the LN2, and running costs can be high.
Compressor cooling using refrigerants offers lower running costs, though at the expense of higher complexity. The cooling coil is by-passed at high temperatures to protect the refrigerant and oil from degradation.
We have experience in all these methods and will be pleased to offer unbiased advice for your specific application.
Construction
Chambers are typically constructed using a welded mild steel external frame, clad with formed steel panels. The inner chamber is of seam-welded stainless steel, insulated from the outer frame by suitably rated thermal insulation and heat-breaks to ensure efficient operation.
Non-magnetic aluminium construction is available as an option, and chambers can be supported at an angle to align the probes with the Earth’s magnetic field, if required.
Product support
We offer complete solutions including product fixturing. Probes typically need to be rigidly supported and internal jigs therefore need to be mechanically supported directly from an external frame, via suitable heat-breaks.
Electrical+mechanical connections
Most probes need to be electrically powered and/or monitored and cable ports are provided for this purpose. Special interfaces for pneumatic and hydraulic connections and motor drive shafts can also be provided.
Other options
We’re pleased to discuss non-standard requirements, and may already have a solution available. For example, retractable mechanisms are available for inserting low power radiation sources near to the probes, to simulate the natural radiation levels in rock strata.
Safety considerations
Devices under test may be operating at high and low temperatures, and at high speeds or pressures. Safety protection for the operator, the products under test, and the test system itself is designed into our systems from the outset.
